Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 86(8): 1003-1011, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488576

RESUMO

The heterotrimeric (αßγ) translation initiation factor 2 of archaea and eukaryotes (a/eIF2) supplies the P-site of the ribosome with the initiation tRNA. Its two subunits (ß and γ) contain the Cys2-Cys2 motif, which is capable of forming a stable zinc finger structure in the presence of zinc ions. In this work, comparative analysis of the fragments containing Cys2-Cys2 motifs in the aIF2ß and aIF2γ structures from different organisms was carried out and their environments in crystals was analyzed. Based on the obtained data, a conclusion was made that the conformation and role of these fragments in the ß- and γ-subunits of the aIF2 are different.


Assuntos
Proteínas Arqueais/química , Cisteína/química , Fatores de Iniciação de Peptídeos/química , Fator de Iniciação 2 em Procariotos/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Íons , Conformação Molecular , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Sulfolobus solfataricus/química , Zinco , Dedos de Zinco
2.
J Struct Biol ; 211(3): 107559, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32653645

RESUMO

Complexes of archaeal ribosomal proteins uL11 and uL10/P0 (the two-domain N-terminal fragment of uL10, uL10NTF/P0NTF) with the adjacent 74 nucleotides of 23S rRNA fragment (23SrRNA(74)) from Methanococcus jannaschii (Mja) were obtained, crystallized and their structures were studied. The comparative structural analysis of the complexes of Mja uL10NTF•23SrRNA(74) and Mja uL10NTF•uL11•23SrRNA(74) shows that the insertion of uL11 in the binary complex does not change the conformation of the 23S rRNA fragment. On the other hand, the interaction with this specific RNA fragment leads to the restructuring of uL11 compared to the structure of this protein in the free state. Besides, although analysis confirmed the mobility of uL10/P0 domain II, disproved the assumption that it may be in contact with rRNA or uL11. In addition, the Mja uL10NTF•uL11•23SrRNA(74) complex was cocrystallized with the antibiotic thiostrepton, and the structure of this complex was solved. The thiostrepton binding site in this archaeal complex was found between the 23S rRNA and the N-terminal domain (NTD) of the Mja uL11 protein, similar to its binding site in the one of bacterial ribosome complex with thiostrepton. Upon binding of thiostrepton, the NTD of uL11 shifts toward rRNA by 7 Å. Such a shift may be the cause of the inhibitory effect of the antibiotic on the recruitment of translation factors to the GTPase-activating region in archaeal ribosomes, similar to its inhibitory effect on protein synthesis in bacterial ribosomes.


Assuntos
Proteínas Arqueais/química , Methanocaldococcus/química , Proteínas Ribossômicas/química , Ribossomos/química , Proteínas Arqueais/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Domínios Proteicos , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Proteínas Ribossômicas/metabolismo , Tioestreptona/metabolismo
3.
Acta Crystallogr D Struct Biol ; 75(Pt 4): 392-399, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30988256

RESUMO

The structure of the γ subunit of archaeal translation initiation factor 2 (aIF2) from Sulfolobus solfataricus (SsoIF2γ) was determined in complex with GDPCP (a GTP analog). Crystals were obtained in the absence of magnesium ions in the crystallization solution. They belonged to space group P1, with five molecules in the unit cell. Four of these molecules are related in pairs by a common noncrystallographic twofold symmetry axis, while the fifth has no symmetry equivalent. Analysis of the structure and its comparison with other known aIF2 γ-subunit structures in the GTP-bound state show that (i) the magnesium ion is necessary for the formation and the maintenance of the active form of SsoIF2γ and (ii) in addition to the two previously known structural switches 1 and 2, eukaryotic translation initiation factor 2 (eIF2) and aIF2 molecules have another flexible region (switch 3), the function of which may consist of initiation of the hydrolysis of GTP and the removal of e/aIF2 from the ribosome after codon-anticodon recognition.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cristalografia por Raios X/métodos , Guanosina Trifosfato/metabolismo , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Conformação Proteica , Ribossomos/metabolismo , Sulfolobus solfataricus/metabolismo , Sítios de Ligação , Domínio Catalítico , Humanos , Hidrólise , Modelos Moleculares , Estrutura Molecular , Ligação Proteica
4.
Cell Rep ; 20(3): 521-528, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28723557

RESUMO

The repertoire of the density-regulated protein (DENR) and the malignant T cell-amplified sequence 1 (MCT-1/MCTS1) oncoprotein was recently expanded to include translational control of a specific set of cancer-related mRNAs. DENR and MCT-1 form the heterodimer, which binds to the ribosome and operates at both translation initiation and reinitiation steps, though by a mechanism that is yet unclear. Here, we determined the crystal structure of the human small ribosomal subunit in complex with DENR-MCT-1. The structure reveals the location of the DENR-MCT-1 dimer bound to the small ribosomal subunit. The binding site of the C-terminal domain of DENR on the ribosome has a striking similarity with those of canonical initiation factor 1 (eIF1), which controls the fidelity of translation initiation and scanning. Our findings elucidate how the DENR-MCT-1 dimer interacts with the ribosome and have functional implications for the mechanism of unconventional translation initiation and reinitiation.


Assuntos
Proteínas de Ciclo Celular/química , Fatores de Iniciação em Eucariotos/química , Proteínas Oncogênicas/química , Ribossomos/química , Cristalografia por Raios X , Humanos , Estrutura Quaternária de Proteína
5.
Sci Rep ; 6: 37905, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892500

RESUMO

mRNAs lacking 5' untranslated regions (leaderless mRNAs) are molecular relics of an ancient translation initiation pathway. Nevertheless, they still represent a significant portion of transcriptome in some taxons, including a number of eukaryotic species. In bacteria and archaea, the leaderless mRNAs can bind non-dissociated 70 S ribosomes and initiate translation without protein initiation factors involved. Here we use the Fleeting mRNA Transfection technique (FLERT) to show that translation of a leaderless reporter mRNA is resistant to conditions when eIF2 and eIF4F, two key eukaryotic translation initiation factors, are inactivated in mammalian cells. We report an unconventional translation initiation pathway utilized by the leaderless mRNA in vitro, in addition to the previously described 80S-, eIF2-, or eIF2D-mediated modes. This mechanism is a bacterial-like eIF5B/IF2-assisted initiation that has only been reported for hepatitis C virus-like internal ribosome entry sites (IRESs). Therefore, the leaderless mRNA is able to take any of four different translation initiation pathways in eukaryotes.


Assuntos
Células Eucarióticas/fisiologia , Iniciação Traducional da Cadeia Peptídica/fisiologia , RNA Mensageiro/metabolismo , Sistema Livre de Células , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Células HEK293 , Hepatite C/genética , Humanos , Sítios Internos de Entrada Ribossomal , Complexos Multiproteicos , Biossíntese de Proteínas , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Transfecção/métodos
6.
Biochimie ; 121: 197-203, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26700147

RESUMO

In Archaea and Eukaryotes, the binding of Met-tRNAi(Met) to the P-site of the ribosome is mediated by translation initiation factor 2 (a/eIF2) which consists of three subunits: α, ß and γ. Here, we present the high-resolution structure of intact aIF2γ from Sulfolobus solfataricus (SsoIF2γ) in complex with GTP analog, GDPCP. The comparison of the nucleotide-binding pockets in this structure and in the structure of the ribosome-bound form of EF-Tu reveals their close conformation similarity. The nucleotide-binding pocket conformation observed in this structure could be consider as corresponding to intermediate conformation of EF-Tu nucleotide-binding pocket in its transition from the GTP-bound form to the GDP-bound one. Three clusters of well defined water molecules are associated with amino acid residues of the SsoIF2γ nucleotide-binding pocket and stabilize its conformation. We suppose that two water bridges between the oxygen atoms of the GTP γ-phosphate and negatively charged residues of the pocket can serve as ways to transmit protons arising from the catalytic reaction.


Assuntos
Fator de Iniciação 2 em Procariotos/metabolismo , Sulfolobus solfataricus/metabolismo , Catálise , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Fator de Iniciação 2 em Procariotos/química , Ligação Proteica , Ribossomos/metabolismo , Solventes/química , Água/metabolismo , Difração de Raios X
7.
J Mol Biol ; 427(19): 3086-95, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26244522

RESUMO

The heterotrimeric archaeal IF2 orthologue of eukaryotic translation initiation factor 2 consists of the α-subunit, ß-subunit and γ-subunit. Previous studies showed that the γ-subunit of aIF2, besides its central role in Met-tRNAi binding, has an additional function: it binds to the 5'-triphosphorylated end of mRNA and protects its 5'-part from degradation. Competition studies with nucleotides and mRNA, as well as structural and kinetic analyses of aIF2γ mutants, strongly implicate the canonical GTP/GDP-binding pocket in binding to the 5'-triphosphate end of mRNAs. The biological implication of these findings is being discussed.


Assuntos
Fatores de Iniciação de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Sulfolobus solfataricus/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Guanosina Trifosfato/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fatores de Iniciação de Peptídeos/química , Subunidades Proteicas , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA Mensageiro/química , Sulfolobus solfataricus/química
8.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 8): 1083-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26249704

RESUMO

Ribosomal protein L11 is an important part of the GTPase-associated centre in ribosomes of all organisms. L11 is a highly conserved two-domain ribosomal protein. The C-terminal domain of L11 is an RNA-binding domain that binds to a fragment of 23S rRNA and stabilizes its structure. The complex between L11 and 23S rRNA is involved in the GTPase activity of the translation elongation and release factors. Bacterial and archaeal L11-rRNA complexes are targets for peptide antibiotics of the thiazole class. To date, there is no complete structure of archaeal L11 owing to the mobility of the N-terminal domain of the protein. Here, the crystallization and X-ray analysis of the ribosomal protein L11 from Methanococcus jannaschii are reported. Crystals of the native protein and its selenomethionine derivative belonged to the orthorhombic space group I222 and were suitable for structural studies. Native and single-wavelength anomalous dispersion data sets have been collected and determination of the structure is in progress.


Assuntos
Proteínas Arqueais/química , RNA Ribossômico 23S/química , Proteínas Ribossômicas/química , Proteínas Arqueais/genética , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Methanocaldococcus/química , Methanocaldococcus/metabolismo , RNA Ribossômico 23S/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Ribossômicas/genética , Selenometionina/química , Selenometionina/metabolismo
9.
Protein J ; 34(2): 103-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681234

RESUMO

L1 is a conserved protein of the large ribosomal subunit. This protein binds strongly to the specific region of the high molecular weight rRNA of the large ribosomal subunit, thus forming a conserved flexible structural element--the L1 stalk. L1 protein also regulates translation of the operon that comprises its own gene. Crystallographic data suggest that L1 interacts with RNA mainly by means of its domain I. We show here for the first time that the isolated domain I of the bacterial protein L1 of Thermus thermophilus and Escherichia coli is able to incorporate in vivo into the E. coli ribosome. Furthermore, domain I of T. thermophilus L1 can regulate expression of the L1 gene operon of Archaea in the coupled transcription-translation system in vitro, as well as the intact protein. We have identified the structural elements of domain I of the L1 protein that may be responsible for its regulatory properties.


Assuntos
Proteínas de Bactérias/química , Óperon/genética , RNA Bacteriano/química , Proteínas Ribossômicas/química , Ribossomos/química , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Sequência de Bases , Escherichia coli/química , Escherichia coli/genética , Dados de Sequência Molecular , Plasmídeos , Estrutura Terciária de Proteína , RNA Bacteriano/genética , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , Proteínas Ribossômicas/genética , Ressonância de Plasmônio de Superfície , Thermus thermophilus/química , Thermus thermophilus/genética
10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 376-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25664749

RESUMO

Ribosomal protein L1, as part of the L1 stalk of the 50S ribosomal subunit, is implicated in directing tRNA movement through the ribosome during translocation. High-resolution crystal structures of four mutants (T217V, T217A, M218L and G219V) of the ribosomal protein L1 from Thermus thermophilus (TthL1) in complex with a specific 80 nt fragment of 23S rRNA and the structures of two of these mutants (T217V and G219V) in the RNA-unbound form are reported in this work. All mutations are located in the highly conserved triad Thr-Met-Gly, which is responsible for about 17% of all protein-RNA hydrogen bonds and 50% of solvent-inaccessible intermolecular hydrogen bonds. In the mutated proteins without bound RNA the RNA-binding regions show substantial conformational changes. On the other hand, in the complexes with RNA the structures of the RNA-binding surfaces in all studied mutants are very similar to the structure of the wild-type protein in complex with RNA. This shows that formation of the RNA complexes restores the distorted surfaces of the mutant proteins to a conformation characteristic of the wild-type protein complex. Domain I of the mutated TthL1 and helix 77 of 23S rRNA form a rigid body identical to that found in the complex of wild-type TthL1 with RNA, suggesting that the observed relative orientation is conserved and is probably important for ribosome function. Analysis of the complex structures and the kinetic data show that the number of intermolecular contacts and hydrogen bonds in the RNA-protein contact area does not correlate with the affinity of the protein for RNA and cannot be used as a measure of affinity.


Assuntos
RNA Ribossômico 23S/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Mutação Puntual , Conformação Proteica , RNA Ribossômico 23S/química , Proteínas Ribossômicas/química , Thermus thermophilus/química
11.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 658-67, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24598735

RESUMO

In eukaryotes and archaea, the heterotrimeric translation initiation factor 2 (e/aIF2) is pivotal for the delivery of methionylated initiator tRNA (Met-tRNA(i)) to the ribosome. It acts as a molecular switch that cycles between inactive (GDP-bound) and active (GTP-bound) states. Recent studies show that eIF2 can also exist in a long-lived eIF2γ-GDP-P(i) (inorganic phosphate) active state. Here, four high-resolution crystal structures of aIF2γ from Sulfolobus solfataricus are reported: aIF2γ-GDPCP (a nonhydrolyzable GTP analogue), aIF2γ-GDP-formate (in which a formate ion possibly mimics P(i)), aIF2γ-GDP and nucleotide-free aIF2γ. The structures describe the different states of aIF2γ and demonstrate the conformational transitions that take place in the aIF2γ `life cycle'.


Assuntos
Proteínas Arqueais/química , Fatores de Iniciação de Peptídeos/química , Subunidades Proteicas/química , Sulfolobus solfataricus/química , Proteínas Arqueais/genética , Cristalografia por Raios X , Guanosina Trifosfato/química , Fatores de Iniciação de Peptídeos/genética , Conformação Proteica , Subunidades Proteicas/genética , Sulfolobus solfataricus/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-24192371

RESUMO

The lateral P stalk in archaeal/eukaryotic ribosomes and the L12 stalk in bacterial ribosomes play a pivotal role in specific binding to the ribosome and recruiting translational factors during protein biosynthesis. The P stalk consists of the ribosomal proteins L11, P0 and P1. The proteins P0 and P1 form the complex that binds 23S rRNA through the N-terminal domain of the P0 protein. Ribosomal protein L11 binds to the same region of 23S rRNA and together with the protein P0 forms the base of the stalk. The structure of the ribosomal protein L11 from archaea has been solved, but with several missing segments. Here, the preparation and crystallization of a ternary complex consisting of the ribosomal protein L11, the two-domain N-terminal fragment of the ribosomal protein P0 and a specific fragment of 23S rRNA from the archaeon Methanococcus jannaschii are reported. The crystals belonged to the monoclinic space group P2(1), with unit-cell parameters a = 72.4, b = 88.5, c = 95.2 Å, ß = 102.2°. A complete diffraction data set has been collected to a resolution of 2.9 Šusing an in-house rotating-anode X-ray generator.


Assuntos
Methanocaldococcus/metabolismo , Ribossomos/química , Proteínas Arqueais/química , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , RNA Ribossômico/química , Proteínas Ribossômicas/química
13.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 997-1004, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695244

RESUMO

The structure of the large ribosomal subunit from the halophilic archaeon Haloarcula marismortui (Hma) is the only crystal structure of an archaeal ribosomal particle that has been determined to date. However, the first model of the Hma 50S ribosomal subunit contained some gaps: the structures of functionally important mobile lateral protuberances were not visualized. Subsequently, some parts of the P (L12) stalk base were visualized at 3.0 Å resolution [Kavran & Steitz (2007), J. Mol. Biol. 371, 1047-1059]: the RNA-binding domain of r-protein P0 (L10), the C-terminal domain of L11 and helices 43 and 44 of the 23 S rRNA. Here, the 2.4 Å resolution electron-density map of the Hma 50S ribosomal subunit was revisited and approximately two-thirds of the P0 protein, residues 1-58 of the N-terminal domains of two P1 protein molecules, residues 130-156 of L11, the full-length r-protein LX, nucleotides 2137-2149 and 2226-2237 of the 23S rRNA helix H76 forming the L1 stalk, nucleotides 2339-2343 of the 23S rRNA (contacting L5 protein) and loops 29-34 and 108-128 of protein L5 could be visualized. Thus, this paper provides a supplemented version of the Hma 50S ribosomal subunit model.


Assuntos
Proteínas Arqueais/química , Haloarcula marismortui/química , Cristalografia por Raios X , Subunidades Ribossômicas Maiores/química
14.
J Mol Biol ; 425(6): 989-98, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23291527

RESUMO

Heterotrimeric aIF2αßγ (archaeal homologue of the eukaryotic translation initiation factor 2) in its GTP-bound form delivers Met-tRNAi(Met) to the small ribosomal subunit. It is known that the heterodimer containing the GTP-bound γ subunit and domain 3 of the α subunit of aIF2 is required for the formation of a stable complex with Met-tRNAi. Here, the crystal structure of an incomplete ternary complex including aIF2αD3γ⋅GDPNP⋅Met-tRNAf(Met) has been solved at 3.2Å resolution. This structure is in good agreement with biochemical and hydroxyl radical probing data. The analysis of the complex shows that despite the structural similarity of aIF2γ and the bacterial translation elongation factor EF-Tu, their modes of tRNA binding are very different. Remarkably, the recently published 5.0-Å-resolution structure of almost the same ternary initiation complex differs dramatically from the structure presented. Reasons for this discrepancy are discussed.


Assuntos
Proteínas Arqueais/química , Guanosina Trifosfato/análogos & derivados , Fatores de Iniciação de Peptídeos/química , RNA de Transferência de Metionina/química , Sulfolobus solfataricus/química , Sítios de Ligação , Cristalografia por Raios X , Guanosina Trifosfato/química , Radical Hidroxila/química , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Sulfolobus solfataricus/genética
15.
Nucleic Acids Res ; 40(18): 9153-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22821559

RESUMO

In the present work, ribosomes assembled in bacterial cells in the absence of essential ribosomal protein L5 were obtained. After arresting L5 synthesis, Escherichia coli cells divide a limited number of times. During this time, accumulation of defective large ribosomal subunits occurs. These 45S particles lack most of the central protuberance (CP) components (5S rRNA and proteins L5, L16, L18, L25, L27, L31, L33 and L35) and are not able to associate with the small ribosomal subunit. At the same time, 5S rRNA is found in the cytoplasm in complex with ribosomal proteins L18 and L25 at quantities equal to the amount of ribosomes. Thus, it is the first demonstration that protein L5 plays a key role in formation of the CP during assembly of the large ribosomal subunit in the bacterial cell. A possible model for the CP assembly in vivo is discussed in view of the data obtained.


Assuntos
Proteínas de Escherichia coli/fisiologia , Proteínas Ribossômicas/fisiologia , Subunidades Ribossômicas Maiores de Bactérias/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Deleção de Genes , Modelos Moleculares , RNA Ribossômico 5S/química , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Ribossomos/metabolismo
16.
J Theor Biol ; 301: 42-8, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22365908

RESUMO

It has become clear that water should not be treated as an inert environment, but rather as an integral and active component of molecules. Here, we consider molecules and their hydration shells together as single entities. We show that: (1) the rate of association of molecules should be determined by the energetic barriers arising from interactions between their hydration shells; (2) replacing non-polar atoms of molecular surfaces with polar atoms increases these barriers; (3) reduction of the hydration shells during molecular association is the driving force for association not only of non-polar, but of polar molecules as well; (4) in most cases the dehydration of polar atoms during molecular association thermodynamically counteracts association; (5) on balance the thermodynamic stability of associated complexes is basically determined by the action of these two opposing factors: reduction of the hydration shells and dehydration of polar atoms; (6) molecular crowding reduces the energetic barriers counteracting association and changes the thermodynamic stability of associated complexes. These results lead to a mechanism for biomolecular recognition in the context of which the formation of unique structures is provided by rapidly forming kinetic traps with a biologically necessary lifetime but with a marginal thermodynamic stability. The mechanism gives definitive answers to questions concerning the heart of specific interactions between biomolecules, their folding and intracellular organization. Predictions are given that can be subjected to direct experimental tests.


Assuntos
Modelos Moleculares , Água/química , Ligação de Hidrogênio , Dobramento de Proteína , Propriedades de Superfície , Termodinâmica
17.
J Mol Biol ; 413(1): 106-14, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21884705

RESUMO

Heterotrimeric translation initiation factor (IF) a/eIF2 (archaeal/eukaryotic IF 2) is present in both Eukarya and Archaea. Despite strong structural similarity between a/eIF2 orthologs from the two domains of life, their functional relationship is obscure. Here, we show that aIF2 from Sulfolobus solfataricus can substitute for its mammalian counterpart in the reconstitution of eukaryotic 48S initiation complexes from purified components. aIF2 is able to correctly place the initiator Met-tRNA(i) into the P-site of the 40S ribosomal subunit and accompany the entire set of eukaryotic translation IFs in the process of cap-dependent scanning and AUG codon selection. However, it seems to be unable to participate in the following step of ribosomal subunit joining. In accordance with this, aIF2 inhibits rather than stimulates protein synthesis in mammalian cell-free system. The ability of recombinant aIF2 protein to direct ribosomal scanning suggests that some archaeal mRNAs may utilize this mechanism during translation initiation.


Assuntos
Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Sulfolobus solfataricus/metabolismo , Células HeLa , Humanos , RNA de Transferência de Metionina/metabolismo
18.
J Mol Recognit ; 24(4): 524-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20740692

RESUMO

The formation of a specific and stable complex between two (macro)molecules implies complementary contact surface regions. We used ribosomal protein L1, which specifically binds a target site on 23S rRNA, to study the influence of surface modifications on the protein-RNA affinity. The threonine residue in the universally conserved triad Thr-Met-Gly significant for RNA recognition and binding was substituted by phenylalanine, valine and alanine, respectively. The crystal structure of the mutant Thr217Val of the isolated domain I of L1 from Thermus thermophilus (TthL1) was determined. This structure and that of two other mutants, which had been determined earlier, were analysed and compared with the structure of the wild type L1 proteins. The influence of structural changes in the mutant L1 proteins on their affinity for the specific 23S rRNA fragment was tested by kinetic experiments using surface plasmon resonance (SPR) biosensor analysis. Association rate constants undergo minor changes, whereas dissociation rate constants displayed significantly higher values in comparison with that for the wild type protein. The analysed L1 mutants recognize the specific RNA target site, but the mutant L1-23S rRNA complexes are less stable compared to the wild type complexes.


Assuntos
RNA Ribossômico 23S/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Cinética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , RNA Ribossômico 23S/genética , Proteínas Ribossômicas/genética , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície/métodos , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-20606268

RESUMO

The bacterial Sm-like protein Hfq forms homohexamers both in solution and in crystals. The monomers are organized as a continuous beta-sheet passing through the whole hexamer ring with a common hydrophobic core. Analysis of the Pseudomonas aeruginosa Hfq (PaeHfq) hexamer structure suggested that solvent-inaccessible intermonomer hydrogen bonds created by conserved amino-acid residues should also stabilize the quaternary structure of the protein. In this work, one such conserved residue, His57, in PaeHfq was replaced by alanine, threonine or asparagine. The crystal structures of His57Thr and His57Ala Hfq were determined and the stabilities of all of the mutant forms and of the wild-type protein were measured. The results obtained demonstrate the great importance of solvent-inaccessible conserved hydrogen bonds between the Hfq monomers in stabilization of the hexamer structure.


Assuntos
Fator Proteico 1 do Hospedeiro/química , Mutação , Multimerização Proteica , Pseudomonas aeruginosa/química , Sequência de Aminoácidos , Cristalografia por Raios X , Histidina/genética , Fator Proteico 1 do Hospedeiro/genética , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/genética
20.
J Mol Biol ; 399(2): 214-20, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20399793

RESUMO

Ribosomal stalk is involved in the formation of the so-called "GTPase-associated site" and plays a key role in the interaction of ribosome with translation factors and in the control of translation accuracy. The stalk is formed by two or three copies of the L7/L12 dimer bound to the C-terminal tail of protein L10. The N-terminal domain of L10 binds to a segment of domain II of 23S rRNA near the binding site for ribosomal protein L11. The structure of bacterial L10 in complex with three L7/L12 N-terminal dimers has been determined in the isolated state, and the structure of the first third of archaeal L10 bound to domain II of 23S rRNA has been solved within the Haloarcula marismortui 50S ribosomal subunit. A close structural similarity between the RNA-binding domain of archaeal L10 and the RNA-binding domain of bacterial L10 has been demonstrated. In this work, a long RNA-binding N-terminal fragment of L10 from Methanococcus jannaschii has been isolated and crystallized. The crystal structure of this fragment (which encompasses two-thirds of the protein) has been solved at 1.6 A resolution. The model presented shows the structure of the RNA-binding domain and the structure of the adjacent domain that exist in archaeal L10 and eukaryotic P0 proteins only. Furthermore, our model incorporated into the structure of the H. marismortui 50S ribosomal subunit allows clarification of the structure of the archaeal ribosomal stalk base.


Assuntos
Proteínas Arqueais/química , Mathanococcus/química , Proteínas Ribossômicas/química , Ribossomos/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Ribossômico/metabolismo , Proteína Ribossômica L10 , Ribossomos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...